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Abstract— Many real world human behaviors can be charac-
terized as sequential decision making processes, such as urban
travelers’ choices of transport modes and routes [1]. Differing
from choices controlled by machines, which in general follows
perfect rationality to adopt the policy with highest reward,
studies have revealed that human agents make sub-optimal
decisions under bounded rationality [2]. Such behaviors can be
modeled using maximum causal entropy (MCE) principle [3].
In this paper, we define and investigate a novel reward trans-
formation problem (namely, reward advancement): Recovering
the range of additional reward functions that transform the
agent’s policy from πo to a predefined target policy πt under
MCE principle. We show that given an MDP and a target policy
πt, there are infinite many additional reward functions that
can achieve the desired policy transformation. Moreover, we
propose an algorithm to further extract the additional rewards
with minimum “cost” to implement the policy transformation.
We demonstrated the correctness and accuracy of our reward
advancement solution using both synthetic data and a large-
scale (6 months) passenger-level public transit data from
Shenzhen, China.

I. INTRODUCTION

In sequential decision making problems [3], human agents
complete tasks by evaluating the rewards received over states
traversed and actions employed. Each human agent may
have her own unique reward function, which governs how
much reward she may receive over states and actions [4],
[5]. For example, urban travelers may evaluate the travel
cost vs travel time with different weights, when deciding
which transport mode, route, and transfer stations to take [1].
Uber drivers may prefer different urban regions to look for
passengers, depending on their familiarity to the regions,
and distance to their home locations, etc [6]. To quantify
and measure the unique reward function each human agent
possesses, maximum causal entropy inverse reinforcement
learning (IRL) [7] has been proposed to find the reward
function and the corresponding policy, that best represents
demonstrated behaviors from the human agent with the
highest causal entropy, subject to the constraint of match-
ing feature expectations to the distribution of demonstrated
behaviors.

Going beyond the human agent reward learning problem,
in this paper, we move one step further to investigate how we
can influence and change agent’s policy (i.e., decisions) to a
target policy πt from the original policy πo observed from
the agent’s trajectories, by purposely updating and advancing
the rewards received by the human agent. Figure 1 illustrates
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Fig. 1. An Example of Reward Advancement
this problem with a concrete example. A small scale Markov
Decision Process (MDP) has two states {s0, s1}, and two
actions {a1, a2}. Starting from s0, an agent can reach s1 by
either taking action a1 or a2. The original rewards received
by the agent from taking action a1 are a2 are equal, i.e.,
R(s0, a1) = R(s0, a2) = 3 (Figure 1(a)). As a result, the
policy of choosing a1 vs a2 are both 50% by the maximum
entropy principle [7]. If we want the human agent to switch
to a new policy (see Figure 1(b)) with πt(a1|s0) = 0.73 and
πt(a2|s0) = 0.27, respectively, we can introduce additional
reward ∆R(s0, a2) = −1 to state-action (s0, a2), and keep
R(s0, a1) invariant (Figure 1(c)).

This problem of finding additional reward to transform
human agent’s policy with minimum cost is of great practical
importance. For example, urban passengers employ their own
unique policies to choose transit modes and transfer stations,
which may collectively lead to unbalanced crowd flows, i.e.,
under- and over-supplied traffic over stations and routes. One
way to mitigate such a problem is to motivate or incentivize
passengers to autonomously change and transform their
policies, e.g., by providing additional reward to the those
passenger agents, in forms of coupons, discounted price,
etc [8], [9]. Moreover, it is crucial how to achieve this
goal with minimum overall cost. In the literature, reward
transformations [10], [11] have been studied extensively,
primarily focusing on transforming the reward, with the goal
of preserving the same policy (which is formally termed
as “reward shaping”). Differing from reward shaping, our
design goal is more general, namely, transforming rewards,
so the agent behaves as a target policy πt, which may or
may not be the same as the agent’s original policy πo. We
refer this problem as a “reward advancement” problem.

In this paper, we make the first attempt to tackle the
reward advancement problem. Given a Markov Decision
Process and a target policy πt, we investigate the range of
additional rewards that can transform the agent’s policy to
the predefined target policy πt under MCE principle. Our
main contributions are summarized as follows.
• We are the first to define and study the reward advance-

ment problem, namely, finding the updating rewards to
transform human agent’s behaving policy to a prede-
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fined target policy. We provide a close-form solution
to this problem. The solution indicates that there exist
infinite many such additional rewards, that can achieve
the desired policy transformation.

• Moreover, we define and investigate min-cost reward
advancement problem, which aims to find the additional
rewards that can transform the agent’s policy to πt,
while minimizing the cost of the policy transformation.

• We also demonstrated the correctness and accuracy of
our reward advancement algorithm using both synthetic
data and a large-scale (6 months) passenger-level public
transit data from Shenzhen, China.

The paper is organized as follows, Section II discusses
preliminaries and formally defines the reward advancement
problem. Section III introduces our maximum entropy re-
ward advancement algorithm. Section V presents evaluation
results using both grid world scenario and real world urban
passenger data. Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we review the basics of finite Markov
Decision Process and Maximum Causal Entropy (MCE)
policy.

A. Markov Decision Process

An MDP is represented as a tuple 〈S,A, T, γ, µ0, R〉,
where S is a finite set of states and A is a finite set of actions.
T is the probabilistic transition function with T (s′|s, a) as
the probability of arriving at state s′ by executing action a
at state s, γ ∈ (0, 1] is the discount factor1, µ0 : S → [0, 1]
is the initial distribution, and R : S ×A→ R is the reward
function. A randomized, memoryless policy is a function
that specifies a probability distribution on the action to be
executed in each state, defined as π : S × A → [0, 1]. We
use ζ = [s0, a0, s1, a1, . . . , sL, aL] to denote a trajectory
generated by the Markov Decision Process (MDP), which is
a sequence of state-action pair. L is the length of trajectory.
The planning problem in an MDP aims to find a policy π,
such that the expected total reward is maximized.

B. Policy under Maximum Causal Entropy Principle

One well-known solution to the inverse reinforcement
learning problem is Maximum Causal Entropy Inverse Re-
inforcement Learning [3]. It proposes to find the policy
that best represents demonstrated behaviors with highest
causal entropy H(A||S), which is calculated by H(A||S) =
−
∑
s∈S

∑
a∈AD(s, a) lnπ(a|s), where D(s, a) represents

the expected visitation frequency of the state-action pair
(s, a), when one trajectory is generated under policy π(a|s).

The policy under maximum causal entropy princi-
ple (i.e., MCE policy) best represents the demon-
strated behaviors with the highest causal entropy, and
is subject to matching the reward expectations of
demonstrated behaviors. Denote Q(s, a) = R(s, a) +∑
s′∈S T (s′|s, a)

∑
a′∈A π(a′|s′)Q(s′, a′) as Q-function on

1Without loss of generality, we assume γ = 1 in this work, and it is
straightforward to generalize our results to γ 6= 1.

state-action pair (s, a), indicating the expected rewards to be
received starting from (s, a), MCE policy is

π(a|s) =
eQ(s,a)∑

a′∈A e
Q(s,a′)

. (1)

Eq.(1) is the policy conducted by the human agent, that
best matches her generated trajectory data. Usually, the
Q(s, a) can be represented using a parameterized function
Q(s, a|θ), for instance, a neural network model. If we use
T̃R to represent expert trajectories we collected, the Q-
function Q(s, a|θ)’s then can be estimated by solving a
maximum likelihood estimation problem,

θ∗ = argmax
θ

L(θ) = argmax θ
∑
ζ∈T̃R

lnP (ζ|θ). (2)

III. REWARD ADVANCEMENT

Inverse reinforcement learning problem [10], [3], [7], [12],
[13], [14], [15] aims to inversely learn agent’s reward (or
preference) function from their demonstrated trajectories,
namely, inferring how agent makes decisions. In this work,
we move one step further to investigate how we can in-
fluence and transform agent’s decision-making policy to a
target policy πt from the original policy πo observed from
the demonstrated trajectories, by purposely updating and
advancing the reward functions R(s, a) in the MDP. Reward
transformations [10], [16] have been studied in the literature,
primarily focusing on transforming the rewards, with the goal
of preserving the same policy (which is formally termed
as “reward shaping”). Differing from reward shaping, our
design goal is more general, say, transforming rewards, so
the agent behaves as a predefined target policy πt, which may
or may not be the agent’s current policy πo. This problem
is referred to as a ”reward advancement” problem, and we
formally define it as follows.
Reward Advancement Problem. Given an MDP
〈S,A, T, µ0, Ro〉, the agent’s MCE policy is πo. we
aim to find additional rewards ∆R to be added to the
original reward Ro, such that the agent’s MCE policy
under the updated MDP 〈S,A, T, µ0, Ro + ∆R〉 follows a
predefined target policy πt. Without loss of generality, we
use γ = 1 as discount factor for simplicity.

For MDP 〈S,A, T, µ0, Ro〉, each policy π running on it
leads to a unique Q-function:

Qπo (s, a) = Ro(s, a) +
∑
s′∈S

T (s′|s, a)
∑
a′∈A

π(s′, a′)Qo(s
′, a′).

From Maximum Causal Entropy Inverse Reinforcement
Learning, there exists a unique MCE policy πo in form
of eq.(1) that maximizes the likelihood of observing the
given demonstration data. However, when appropriate
additional rewards ∆R(s, a) are provided, MDP becomes
〈S,A, T, µ0, Ro + ∆R〉, and the underlying MCE
policy may change to π. This occurs because the
additional rewards ∆R transforms and advances the
MCE policy from πo to π. In this case, the Q-function
with MCE policy π is characterized as Qπ(s, a) =
R(s, a) +

∑
s′∈S T (s′|s, a)

∑
a′∈A π(a′|s′)Qπ(s′, a′),
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where R(s, a) = Ro(s, a) + ∆R(s, a), Qπ(s, a) =
Qπo (s, a) + ∆Q(s, a), and ∆Q(s, a) = ∆R(s, a) +∑
s′∈S T (s′|s, a)

∑
a′∈A π(a′|s′)∆Q(s′, a′).

As a result, transforming from the original MCE policy πo,
the new MCE policy π is a function of addition reward ∆R,
or equivalently ∆Q, i.e., π(a|s; ∆Q). Given a predefined
πt, finding the right ∆Q, such that π(a|s; ∆Q) = πt(a|s)
for any s ∈ S and a ∈ A, solves the reward advancement
problem. The following Theorem 1 introduces the complete
solution set to this problem.

Theorem 1. Given an MDP 〈S,A, T, µ0, Ro〉, the sufficient
and necessary condition to transform its MCE policy to a
predefined policy πt is to provide additional Q-function ∆Q,
such that

∆Q(s, a) = ln
πt(a|s)
eQ

πt
o (s,a)

+ β(s), (3)

where β : S → R is any real number function defined on
states. Such additional Q-function is called “advancement
function”.

Proof. (Sufficiency.) If ∆Q(s, a) follows eq.(3), the new Q-
function over πt becomes:

Qπt(s, a) = Qπto (s, a) + ∆Q(s, a) = lnπt(a|s) + β(s).

As a result, for any (s, a), the ratio between eQ
πt (s,a) and∑

a′ e
Qπt (s,a′) is exactly πt(a|s), thus πt is the MCE policy

of the new MDP.
(Necessity.) Given a certain additional Q-function ∆Q, if

it transforms the MCE policy to πt, that infers

πt(a|s) =
eQ

πt
o (s,a)+∆Q(s,a)∑

a′∈A e
Q
πt
o (s,a′)+∆Q(s,a′)

, (4)

e∆Q(s,a) =
πt(a|s)
eQ

πt
o (s,a)

∑
a′∈A

eQ
πt
o (s,a′)+∆Q(s,a′). (5)

Define β(s) = ln
∑
a′∈A e

Qπto (s,a′)+∆Q(s,a′), we have
∆Q(s, a) = ln πt(a|s)

eQ(s,a) + β(s). It completes the proof.

The advancement function introduced in Theorem 1 is
defined on additional Q-function, which can be easily “trans-
lated” into additional reward function ∆R by the following
mapping function.

∆R(s, a) = ∆Q(s, a)−∑
s′∈S

T (s′|s, a)
∑
a′∈A

πt(s
′, a′)∆Q(s′, a′). (6)

Theorem 1 indicates that there are infinite many ad-
vancement functions that can transform an original MCE
policy πo to a given πt. However, different advancement
functions may lead to different costs in reality to apply
the additional rewards. For example, in ride-hailing service,
additional rewards provided to Uber drivers could be in
the form of monetary values; in urban public transportation
systems, the additional rewards to passengers could be in
forms of ride discount. More additional rewards applied lead
to more cost to the system. Without lower bound on β(s),

the advancement function ∆Q can be as low as −∞. In
turn, the addition rewards ∆R inferred from eq.(6) can be
arbitrarily small as well. It is equivalent to increase the ride
rate to be extremely large for public transits, which is not
feasible in real world scenario. Next, we will introduce and
provide solution to the reward advancement problem with
minimum cost as the objective.

IV. MIN-COST REWARD ADVANCEMENT

Now, we investigate how to identify additional rewards
that transform the agent to an MCE policy πt, while guaran-
teeing minimum “implementation cost”, namely, a min-cost
reward advancement problem. Without loss of generality, we
consider that the total cost of transforming the agent’s policy
is equal to the expected additional rewards offered to the
agent, i.e.,

C(∆R) =
∑
s∈S

∑
a∈A

Dt(s, a)∆R(s, a)

= C(∆Q) =
∑
s∈S

∑
a∈A

µ0(s)πt(a|s)∆Q(s, a),

where Dt(s, a) is the state-action pair visitation frequency
under target policy πt, and µ0(s) is the initial state dis-
tribution. As a result, the general form of min-cost reward
advancement problem can be formulated as follows.

Problem 1: Min-Cost Reward Advancement:

min
∆Q

C(∆Q) =
∑
s∈S

∑
a∈A

µ0(s)πt(a|s)∆Q(s, a), (7)

s.t. π(a|s; ∆Q) = πt(a|s), ∀s ∈ S, a ∈ A, (8)
∆Q(s, a) ≥ φ(s, a), ∀s ∈ S, a ∈ A. (9)

Constraint eq.(8) guarantees to transform the agent’s MCE
policy to πt, representing the infinite many feasible solutions
given in Theorem 1. Constraint eq.(9) specifies the mini-
mum additional expected reward we can offer to the agent,
namely, φ : S × A → R are system constants. Constraint
eq.(9) makes sense in reality, which infers that the expected
reward received by the agent cannot be lower than a certain
minimum value. without this constraint, ∆Q(s, a) = −∞
becomes a trivial solution to Problem 1.

Theorem 2. The solution to the min-cost reward advance-
ment problem in eq.(7)-(9) is

∆Q(s, a) = max
a′∈A

(ln eQ
πt
o (s,a′)

eQ
πt
o (s,a)

πt(a|s)
πt(a′|s) + φ(s, a′)), µ0(s) > 0,

∆Q(s, a) ≥ max
a′∈A

(ln eQ
πt
o (s,a′)

eQ
πt
o (s,a)

πt(a|s)
πt(a′|s) + φ(s, a′)), µ0(s) = 0.

Proof. Theorem 1 indicates the solution set of constraint
eq.(8). As a result, we can safely remove constraint eq.(8)
and replace ∆Q(s, a) with eq.(3). Then, Problem 1 is trans-
ferred to the following format, with variable β(s), instead.
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Problem 2: Min-Cost Reward Advancement in β

min
β

∑
s∈S

∑
a∈A

µ0(s)πt(a|s)(β(s) + ln
πt(a|s)
eQ

πt
o (s,a)

), (10)

s.t β(s) ≥ max
a∈A

(ln
eQ

πt
o (s,a)

πt(a|s)
+ φ(s, a)), ∀s ∈ S. (11)

Eq.(10) is clearly a linear function of β(s). As a result, the
minimum objective function eq.(10) is achieved, when each
β(s) is minimum, that is, when the equality is attained in
constraint eq.(11):

β(s) = max
a∈A

(ln
eQ

πt
o (s,a)

πt(a|s)
+ φ(s, a)), µ0(s) ≥ 0. (12)

Moreover, eq.(10) indicates that the value of objective func-
tion only hinges on β(s), with µ0(s) > 0. For other states
with µ0(s) = 0, β(s) only needs to fulfill the constraint
eq.(11), and has no impact on the value of the objective
function. The complete set of solutions to Problem 2 is as
follows.β(s) = maxa∈A(ln eQ

πt
o (s,a)

πt(a|s) + φ(s, a)), µ0(s) > 0,

β(s) ≥ maxa∈A(ln eQ
πt
o (s,a)

πt(a|s) + φ(s, a)), µ0(s) = 0.

Plugging the above solution set to eq.(3) yields the solution
to ∆Q, and completes the proof.

Again, the solutions to advancement function ∆Q can be
mapped to additional rewards ∆R, by applying

∆R(s, a) = ∆Q(s, a)−
∑
s′∈S

T (s′|s, a)
∑
a′∈A

πt(a
′|s′)∆Q(s′, a′).

Moreover, Theorem 2 indicates that the optimal solutions
of ∆Q(s, a) on states with µ0(s) > 0 are unique (with
equalities), while solutions on states with µ0(s) = 0 are
infinite many, following inequalities.
Practical challenges in algorithm design. Theorem 2 pro-
vides a nice close-form solution set to the min-cost re-
ward advancement problem. However, it requires calculating
Qπto (s, a) based on original reward Ro(s, a) and target policy
πt(a|s). A natural way to calculate it is value iteration
method [7], [17], which employs an iterative framework,
and solves a dynamic programming sub-problem within
each iteration. As a result, such approach would be time-
consuming, when the state space is large. Moreover, the
value iteration will not work, when the transition matrix T
is unknown.

To address the problems of scalability and unknown dy-
namics, we propose to apply Monte Carlo policy evaluation
method to estimate Q-function of original rewards under
target policy Qπto (s, a). Here, we adopt the first-visit Monte
Carlo method [17]. From first-visit Monte Carlo method, we
have Qo(s, a) as the average total reward after first visit to
state-action pair (s, a) on each trajectory, denoted as

Qo(s, a) =
1

|T̃Rs,a|

∑
ζ∈T̃Rs,a

∑
t≥t(s,a)|ζ

Ro(st, at), (13)

Algorithm 1 Min-Cost Reward Advancement via Monte
Carlo Policy Evaluation

1: INPUT: States S, Actions A, Original Rewards Ro and
Original Trajectory Set T̃R;

2: OUTPUT: Additional reward on each state-action pair
∆R(s, a) (One from many solutions in Theorem 2);

3: For each state-action pair (s, a), calculate Qπto (s, a) =∑
ζ∈T̃Rs,a

∑
t≥t(s,a)|ζ

πt(a|s)
πo(a|s)

Ro(st,at)

|T̃Rs,a|
;

4: Calculate β(s) = maxa∈A(ln eQ
πt
o (s,a)

πt(a|s) + φ(s, a)) for
each state s;

5: Calculate ∆Q(s, a) = ln πt(a|s)
eQ
πt
o (s,a)

+ β(s) for each stat-
action pair (s, a);

6: For each (s, a), calculate ∆R(s, a) = ∆Q(s, a) −
1

|T̃Rs,a,s′,a′ |

∑
ζ∈T̃Rs,a,s′,a′

πt(a
′|s′)

πo(a′|s′)∆Q(s′, a′);
7: Return ∆R(s, a);

where ζ is one trajectory, (st, at) is a state-action pair on
the trajectory ζ, t(s,a)|ζ is the first occurrence of (s, a) in
ζ and |T̃Rs,a| is number of trajectories traversing (s, a).
Since trajectory set T̃Rs,a were collected with original policy
πo, we adopt importance sampling method to estimate Q-
function of original reward under target policy Qπto (s, a) by

Qπto (s, a) =

∑
ζ∈T̃Rs,a

∑
t≥t(s,a)|ζ

πt(a|s)
πo(a|s)Ro(st, at)

|T̃Rs,a|
, (14)

where the πt(a|s)
πo(a|s) is the importance ratio. Similarly, we can

estimate ∆R(s, a) through importance sampling as

∆R(s, a) = ∆Q(s, a)

− 1

|T̃Rs,a,s′,a′ |

∑
ζ∈T̃Rs,a,s′,a′

πt(a
′|s′)

πo(a′|s′)
∆Q(s′, a′), (15)

where T̃Rs,a,s′,a′ are trajectories containing (s, a, s′, a′) and
|T̃Rs,a,s′,a′ | is the number of those trajectories. Moreover, if
the original policy πo is unknown, we can estimate it from
the observed trajectories.

The algorithm for reward advancement via Monte Carlo
Policy Evaluation is summarized in Algorithm 1. Specifi-
cally, Line 3 calculates Qπto (s, a) using Monte Carlo policy
evaluation.

V. EVALUATION

In this section, we first evaluate the correctness and
accuracy of our (min-cost) reward advancement algorithm,
with synthetic object world scenario. Then, by modeling
passengers’ travel decisions in public transit system as a
Markov Decision Process, we conduct empirical case studies
using a large-scale (6 months) passenger-level public transit
data collected in Shenzhen, China, from 07/01/2016 to
12/30/2016.
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Fig. 2. A 5 × 9 Object World
with 2 different colors.

Fig. 3. Expected additional reward
over policy difference.

Fig. 4. Policy difference over
number of trajectories used.

Fig. 5. Running time over the size
of state space.

A. Evaluation on object world

First, we use an object world [18] scenario to evaluate our
reward advancement algorithm. A Object World is a Grid
World with random placed colored objects. Running into
grids with objects in different colors will lead to different
rewards. We call it “collect the object”. The agent will also
get a large reward by arriving the destination. So, the ideal
policy should be going to the destination, while collecting
as many objects with higher rewards as possible. Figure 2
shows an example of object world. There are 5 × 9 grids.
We randomly placed 2 green objects and 3 red objects in
the scenario. Each object has an color. An agent will gain
a positive reward ([5, 8] in our setting), when it reaches a
grid with a red object, and a negative reward (ranging within
[−5,−3]) when visiting a green object. A grid with no object
leads to a negative reward of −1. Moreover, when the agent
reaches the destination, it gets a large reward, within [15, 30].
At each grid, an agent can take 5 different actions, including
“stay” and “move” towards one of four directions. With
certain given transition probability, the agent would go to
a random neighboring grid along the direction it has chosen.
We choose discount factor γ to be 1 for all experiments.
To evaluate our algorithm, we first randomly generate an
Object World with pre-defined parameters, including the
number of colors and objects. Then, we randomly place
all objects in grids. We run value iteration with entropy-
enhanced reward [19] to calculate a randomized original
policy for the agent in the generated Object World. The target
policy is also randomly generated as the objectives of reward
advancement.
Impact of difference between πo and πt. First, we examine

the impact of the difference between original policy and
target policy to the expected additional reward. We use nor-
malized 2-norm difference of two policy vectors to indicates
the policy difference, which is calculated by ‖πo, πt‖2 =∑

s∈S
∑
a∈A(πo(a|s)−πt(a|s))2

|(s,a)| , where |(s, a)| is the number of
state-action pairs. We evaluate the expected additional re-
ward, which is calculated as

∑
s∈S

∑
a∈ADt(s, a)∆R(s, a)

indicating the total amount of additional reward we would
provide. It’s hard to design target policy with specific dif-
ference from original policy, so we group target policy with
similar difference together and calculate the average ∆R.
The result is shown in Figure 3. The figure indicates that
with increase of policy difference, the expected additional
reward would increase. When larger than a certain threshold
of policy difference, the expected reward increases linearly,

while the policy difference increases linearly as well. This
shows that even with target policy far from original differ-
ence, we can successfully transfer the policy at a reasonable
cost.
Impact of the number of trajectories used in Monte Carlo
policy evaluation. Monte Carlo algorithm is employed to
reduce algorithm running time. However, lower running time
lowers down the inference accuracy. The smaller the sample
size is, the less accurate the policy transformation is. Denote
π′t as the policy transformed to after executing Algorithm 1.
Figure 4 shows how Monte Carlo sample size impacts the
difference between πt and π′t. It is clear that more sampled
trajectories lead to more accurate results. Roughly, we need
around 5, 000 trajectories to achieve a relatively good ac-
curacy. Moreover, with the increase of Object World size,
more trajectories are needed to enable accurate estimation
of additional rewards, for policy transformation.
Impact of state space size on algorithm running time.
Though we have obtained the close-form solution of
∆Q(s, a) and ∆R(s, a), computing Qπto (s, a) is still the
bottleneck component, in running time. Here we evaluate the
efficiency of the Monte Carlo based algorithm we proposed.
Figure 5 shows the running time of 3 different algorithms.
The blue solid line with red dot indicates running time of
Value Iteration, the brown and red dash line with blue dot
means running time of Monte Carlo method with 5, 000
and 10, 000 sampled trajectories, respectively. Obviously, the
Monte Carlo method takes much less time than standard
Value Iteration. Moreover, the running time of Monte Carlo
method increases linearly, as the number of state increases
quadratically. The running time increases with more trajec-
tories used. The result shows that the Monte Carlo method
is more computationally efficient.

B. Case studies

In this section, we use a real-world dataset to demonstrate
the effectiveness of proposed reward advancement algorithm.
To validate the algorithm, we need to verify that agent’s be-
haviors still follow MCE principle after reward advancement.
To validate this assumption, we use a large public transit
dataset. We collected 6 months passenger-level public transit
data from Shenzhen, China, which allows us to evaluate the
potential of redistributing passengers by transforming their
decision policies, in trip starting time, station and transport
mode selection.

Passengers are making sequences of decisions when com-
pleting trips, such as which bus routes and subway lines to
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Fig. 6. Map with source and
destination of one agent and the
newly established subways.

Fig. 7. Policy difference vs
∆Q(s, a).

take, which stops/stations to transfer at. Such sequential de-
cision making processes can be naturally modeled as Markov
decision processes (MDPs). Since nearby stops/stations usu-
ally are similar to passengers, we will split the whole city into
grid cells and aggregate stops/stations within each grid cell.
The states are regional grids during different time intervals.
Actions are available bus routes and subway lines passengers
can take. Our model and formulation follow the work [6].
We inversely learn the reward functions of passengers using
Maximum Causal Entropy Inverse Reinforcement Learn-
ing [3] and the features we use include monetary cost, travel
time, waiting time, and etc.

Additional reward can be provided using different meth-
ods, for example, deploying one new subway line can surely
provide additional rewards to passengers in many different
ways, for example, more transit choices, and lower average
travel time. The Figure 6 illustrates the deployment of a new
subway line in Shenzhen, which is the light blue dash line.
To validate our assumption that providing additional rewards
can transform passengers’ behaviors to a target policy, we
first learn the reward function from passengers’ trajectories
before deployment of the subway line. Then, we use features
changed by deploying the new subway to calculate how
much additional reward were provided. Lastly, we calculate a
new policy, πt, after reward advancement and compare this
policy with ground-truth policy, πtrue, of passengers after
the deployment of new subway line.

Figure 7 shows that the policy differences of state-action
pairs between πt and πtrue are small, with the X-axis as the
Q-function difference of each state-action pair before and
after subway deployment and the Y-axis as the relative error
of πt and πtrue. The small difference between πt and πtrue
validates that our reward advancement theory in Theorem 1.

VI. CONCLUSION

In this work, we define and study a novel reward ad-
vancement problem, namely, finding the updating rewards
to transform human agent’s behavior to a predefined target
policy πt. We provide a close-form solution to this problem.
The solution we found indicates that there exist infinite many
such additional rewards, that can achieve the desired policy
transformation. Moreover, we define and investigate a min-
cost reward advancement problem, which aims to find the
additional rewards that can transform the agent’s policy to
πt, while minimizing the cost of the policy transformation.
We solve this problem by developing an efficient algorithm.

We demonstrated the correctness and accuracy of our reward
advancement solution using both synthetic data and a large-
scale (6 months) passenger-level public transit data from
Shenzhen, China.
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